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Abstract: Previous research into the knowledge required for teaching 

has focused primarily on pre-service and in-service teachers’ 

knowledge. What is less researched, however, is the role of the 

teacher educator in helping pre-service teachers (PSTs) develop the 

knowledge needed in order to teach mathematics to students. The 

focus thus shifts from examining school teachers’ knowledge for 

teaching mathematics to school students, to studying teacher 

educators’ knowledge for teaching teachers. This raises the question 

of what is the nature of this knowledge as required by teacher 

educators, and how evident is it in their practice? This paper 

documents the interactions among two teacher educators and two 

cohorts of PSTs enrolled in a unit designed to teach mathematics 

pedagogy to early childhood and primary PSTs. Over one semester, 

two teacher educators observed each other’s classes, engaged in 

reflective professional conversations, and surveyed PSTs about lesson 

material and delivery. The results indicated there were a number of 

issues faced by the teacher educators that could be interpreted 

through the use of a teacher knowledge framework, with examples for 

this study focussing on a representative lesson. The findings add to the 

field of research into teacher educator knowledge and have 

implications for mathematics teacher educators and the pre-service 

teachers they teach. 

 

 

Introduction 
 

Shulman’s (1987) identification of the different knowledge types required for teaching 

has resulted in a body of literature that has particularly examined teacher and pre-service 

teacher (PST) knowledge, especially in relation to their Pedagogical Content Knowledge 

(PCK). Shulman (1987, p. 8) described PCK as: 

the blending of content and pedagogy into an understanding of how topics, 

problems, or issues are organized, represented, and adapted to the diverse 

interests and abilities of learners, and presented for instruction. Pedagogical 

content knowledge is the category [of teacher knowledge] most likely to 

distinguish the understanding of the content specialist from that of the 

pedagogue. 

In terms of mathematics teaching, PCK is needed for teaching different mathematical 

topics, in order to make these topics comprehensible to learners. This knowledge is also 

central to understanding student misconceptions; knowing how topics are organised and 
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taught; having a repertoire of representations, explanations, and examples that illustrate 

concepts; and having the ability to adjust lessons to cater for all learners (Shulman, 1986).  

Here the purpose of PCK is to help students to learn mathematics. However, where and how 

do teachers learn this PCK? Just as the challenge for mathematics teachers is to determine 

how to teach their students mathematics in an effective way, the challenge faced by teacher 

educators lies in determining how to teach PSTs the PCK that is needed to teach their future 

students. Consequently, what PCK do teacher educators need to draw upon for teaching 

PCK? This is an important question for the development of teacher educators in a 

professional capacity. While PSTs are prepared for their role as teachers through a 

combination of formal training and practicum placement, teacher educators’ prior experience 

may predominantly be in the teaching of children. What skills and knowledge for teaching 

PSTs are additional to this role, and how do we begin to identify them? While investigation 

into in-service and pre-service teacher PCK has been extensively researched (e.g., Chick, 

Pham & Baker, 2006; Hill, Ball & Schilling, 2008; Maher & Muir, 2013), there has been less 

research into the knowledge required by mathematics teacher educators (MTE), the 

“knowledge for teaching knowledge for teaching mathematics” (Beswick & Chapman, 2012, 

p. 2).  

Beswick and Chapman (2012) identified this area as an emerging field of research, 

and attested that the articulation of this knowledge could prove beneficial to prospective and 

practicing teacher educators, institutions who educate or hire teacher educators, and 

prospective and practicing teachers. With this in mind, the research in this paper examines the 

knowledge that teacher educators seem to bring into action when working with PSTs. In 

particular, it looks at what might be called “teacher educator PCK” and addresses the 

following research questions: 

• What aspects of MTE PCK are evident when teacher educators observe each other’s 

practice? 

• In what ways do MTEs make their teaching strategies explicit for PSTs? 

• Are the components of the “Knowledge Quartet” framework, previously used for 

examining mathematics teacher PCK, appropriate to use in the interpreting of MTEs’ 

PCK practices? 

 

 

Review of Literature 
Knowledge for Teaching 

 

Research into the different types of knowledge required for teaching has been well 

documented (e.g., Chick, et al., 2006; Hill, et al., 2008; Ma, 1999; Rowland, Turner, 

Thwaites & Huckstep, 2009; Shulman, 1986). Shulman’s (1987) theoretical framework 

described seven categories of teacher knowledge, which became the foundation for 

describing the knowledge base for teaching. His conceptualisation of PCK has become a 

particular focus for recent mathematics education research.  

Since the conceptualisation of this knowledge, a number of researchers in 

mathematics education have developed their own frameworks for understanding the different 

types of knowledge required for teaching (e.g., Chick et al., 2006; Rowland et al., 2009). 

These frameworks have some features in common, and identify aspects of PCK for teaching 

school mathematics. Chick et al. (2006), for example, developed a framework that identified 

a range of component knowledge areas in three different categories: “clearly PCK”, “content 

knowledge used in a pedagogical context”, and “pedagogical knowledge used in a content 

context”. The framework can, and has been, used to interpret teachers’ PCK for teaching 

school mathematics through evidence of practices such as their use of examples, 
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representations of concepts, and curriculum knowledge. Practical applications of the 

framework have been documented in the literature with regard to considering evidence of 

practising and pre-service teachers’ PCK (e.g., Baker & Chick, 2006; Maher & Muir, 2013). 

Although this framework identified an extensive set of types of knowledge needed for 

teaching, and appeared to have potential for use in teacher education (e.g., as done in Chick 

& Beswick, 2013, 2017), a broader framework was sought for conducting this preliminary 

examination of teacher educators’ knowledge.   

Developed from observations of 24 mathematics lessons by Rowland and colleagues, 

(Rowland et al., 2009), the Knowledge Quartet contains four “units” or dimensions which 

describe teacher knowledge. Each dimension contains a number of elements that could be 

used to interpret classroom practice, including that as undertaken by PSTs. An overview of 

the framework is presented in Table 1.  

 
Category Description Elements Examples of evidence 

Foundation Theoretical background, 

involving knowledge and 

understanding of 

mathematics, knowledge of 

mathematics pedagogy and 

beliefs about mathematics 

Adheres to textbook 

Awareness of purpose 

Concentration on 

procedures 

Identifying errors 

Overt subject knowledge 

Theoretical underpinning 

Use of terminology 

 

Concentrate on 

developing understanding 

rather than excessively 

using procedures 

Show evidence in 

planning of knowledge of 

common errors and 

misconceptions and take 

steps to avoid them 

Use mathematical 

language correctly 

Transformation Ways in which teachers 

transform or represent what 

they know for learners 

Choice of examples 

Choice of representation 

Demonstration 

Use equipment correctly 

to explain processes  

Select appropriate forms 

of representations 

Make use of interactive 

teaching techniques 

Connection The coherence of the 

planning or teaching across 

an episode, lesson or series 

of lessons; also includes the 

sequencing of topics of 

instruction within a lesson 

Anticipation of complexity 

Decisions about 

sequencing 

Making connections 

between procedures 

Making connections 

between concepts 

Recognition of conceptual 

appropriateness 

Make links to previous 

lessons 

Make appropriate 

conceptual connections 

within the subject matter 

Contingency Teacher’s response to 

unplanned and/or 

unexpected classroom 

events 

Deviation from agenda 

Responding to children’s 

ideas 

Use of opportunities 

Respond appropriately to 

students’ comments, 

questions and answers 

Deviate from agenda 

when appropriate  

Table 1: Overview of Knowledge Quartet and its elements (adapted from Rowland et al., 2009) 

 

The Knowledge Quartet was designed to be used as a framework for identifying and 

discussing the ways in which the use of mathematics content knowledge was observed in 

teaching. In the research reported in this paper, the authors utilised this framework not to 

discuss the use of mathematics content knowledge in teaching, but rather the PCK for 

teaching PCK to PSTs. Accordingly, the researchers define content knowledge in this context 

as including pedagogical as well as subject-matter knowledge, since this is the content 

knowledge to be taught to PSTs. The research reported in this paper used this framework to 

examine the teaching practices of two MTEs. Our intention was to reflect upon our teaching 



Australian Journal of Teacher Education 

 Vol 42, 12, December 2017    63 

practice, with the assistance of a “knowledgeable other” (Day, 1999) and to interpret this 

practice through the lens of the Knowledge Quartet. We were motivated to select this 

framework as Rowland et al. (2009) had developed a range of resources to assist with 

interpreting the various elements,1 it has been adopted and reported on by other researchers 

(e.g., Livy, 2010), and we wanted to determine whether or not it was appropriate for 

interpreting the work of experienced MTEs, rather than PSTs or in-service mathematics 

teachers.  

 

 
Reflection and Peer Observation 

 

It is generally agreed that reflection in, on, and about practice is essential for 

developing the capacities of teachers (Day, 1999) and reflective practice has been the subject 

of attention for teacher educators for some time (e.g., Power, Clarke & Hine, 2002). 

Reflection in this context can be defined as “looking back and making sense of practice, 

learning from this and using this learning to affect your future action” (Ghaye & Ghaye, 

1998, p. 2). Although reflection has connotations of thinking processes and contemplative 

self-examination, “reflective practice” better encapsulates the detailed analysis that should 

accompany this reflection (Leitch & Day, 2000). Although many teachers purport to reflect 

on their teaching practice, Moon (2000) suggests that most do not do so in a deliberate 

manner which would result in changes in thinking or actions. Sherin and van Es (2003, p. 93) 

used the term “learning to notice” to describe the process of identifying what is important in a 

situation, interpreting this in terms of how the important components so identified impact on 

teaching, and the application of this to more general principles of teaching and learning. 

Reflective practice, or deliberate reflection, therefore, has a focus on influential factors in 

events, incidents, and personal experiences. In practice, this involves noticing aspects of 

one’s own practice that may be triggered by a question from an outside observer, and then 

recognising and working on issues deemed to be significant. Larrivee (2000) noted that 

reflection during or simultaneously with actions is often difficult in a busy classroom and 

therefore requires a perspective from a meta-position, not only to facilitate looking back after 

the action has taken place but to broaden the perspective via which the action is viewed. This 

is where an outside observer can assist. According to Brophy (2004), teachers rarely gain new 

insights or ideas about improving their teaching unless they receive skilful guidance. Self-

reflection is limiting as teachers tend to interpret what they observe from their own existing 

conceptions of effective instruction (Brophy, 2004). To achieve critical reflection, therefore, 

others are often needed in the process, which is where the help of a mentor or “critical friend” 

can enhance the reflection process (Day, 1999). The expertise of the critical friend is likely to 

be a significant factor in determining the outcomes from such observations, and necessary to 

avoid confirmation of one’s existing beliefs (Schuck, 2002, as cited in Beswick & Chapman, 

2012). 

Peer observation in higher education settings has been documented in the literature, 

with results showing that both the observed and the observer have found the experience 

valuable for and affirming of their own practice (e.g., Hendry & Oliver, 2012). Hendry, Bell, 

and Thomson (2014) reported on a study of how academics learned about teaching from 

observing peers. The results showed that the observers particularly benefited from the 

experience because they were exposed to new strategies or techniques that they were 

motivated to try out in their own teaching. They also felt reassured about their own practice 

and less isolated as teachers, because they were able to recognise that they shared similar 

teaching challenges as their colleagues. 

                                                 
1 See http://www.knowledgequartet.org/ 
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Researching the Work of Mathematics Teacher Educators 

 

Anthony, Beswick, and Ell (2012), document a small number of studies that have 

contributed to the scant research into the role of the MTE. While it is relatively common to 

find examples in the literature of teacher educators working with practicing teachers to reflect 

upon and enhance classroom practices (e.g., Geiger & Goos, 2006; Geiger, Muir & Lamb, 

2015; Muir & Beswick, 2007), or examples of teacher educators conducting self-studies of 

their own practice (e.g., Smith, 2006; Brandenburg, 2008, 2009), the actual role of the teacher 

educator in mathematics education has been largely unexplored. Maher (2011), in a study 

involving four teachers seconded as mathematics teacher-educators, identified a number of 

challenges associated with the role, including the need to link theory with practice, 

assessment processes, teaching in an online environment, and a feeling that they were not part 

of the research culture of the institution. While her study provides some insight into the 

teacher educator’s role, it was conducted with inexperienced teacher educators, did not 

involve classroom observations, and did not have a specific focus on teacher educator PCK.  

It is perhaps not surprising that it is generally MTEs who have conducted what little 

research that has been reported. Much of this research has been self-reflective (Beswick & 

Chapman, 2012) and limited in terms of being explicit about what was actually learned, or 

else addressed the issue of how mathematics teacher educators’ development could be 

facilitated by engaging in research on their instructional practices (Beswick & Chapman, 

2012; Chick & Beswick, 2013, 2017). Any self-study also needs to recognise the danger that 

researching one’s own practice can become either solipsistic or even narcissistic (Mason, 

2008, as cited in Beswick & Chapman, 2012). As Chick (2011) points out, due to the nature 

of their work, teacher educators end up becoming “god-like arbiters” of what will be included 

in mathematics education courses as they routinely make decisions about the content, tasks, 

and emphases that they include in their practice. These decisions are made within the 

constraints of teacher educator programs, including the number of contact hours available, 

students’ mathematical backgrounds, limited assessment opportunities, and the necessity to 

address content knowledge before or alongside PCK (Chick, 2011). 

 

 

Methodology 

 

The aim of the research reported here was to observe teaching episodes in order to 

note aspects of PCK evident in the work of mathematics teacher educators (MTEs). To 

achieve this, a case study method was selected due to the appropriateness of case studies 

when “you [want] to understand a real-life phenomenon in depth, but such understanding 

encompass[es] important contextual conditions because they [are] highly important to your 

phenomenon of study” (Yin, 2009, p.18). In this instance, the phenomenon to be examined 

was the teaching of mathematical pedagogical content knowledge to pre-service teachers, 

with the context being the teaching of a mathematics pedagogy unit to second-year PSTs in a 

metropolitan university. For the purposes of this study the case was a unit designed and 

taught by two mathematics teacher educators that was part of a pre-service primary teacher 

education program.   

In order to examine teacher educator knowledge and actions, the first two authors 

(Tracey and Jill), elected to work together to observe and analyse their work with students in 

the second year teacher preparation subject (unit). This unit involved one online lecture each 

week and, for the students in this study, a two-hour face-to-face tutorial/workshop class to 

engage in activities to support the lecture material. Tracey was the unit coordinator for the 

unit, and made most of the decisions about the content to be addressed and activities to be 
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conducted during the classes. Jill was a tutor for two of the three face-to-face classes (see 

Table 2), with Tracey taking the third. All three workshop classes were conducted on the 

same day. The study also involved second-year primary and early childhood PSTs from the 

three tutorial classes. The unit in this study was the first unit in the degree program designed 

to specifically address pedagogy for teaching mathematics. The content of the unit included 

content and pedagogy for the primary mathematics curriculum, with a particular focus on 

number.   

To enhance validity, multiple sources of evidence were identified for collection to 

enable triangulation of data (Yin, 2009). It was intended that, for each week of the thirteen 

weeks of the unit, the teacher educators would meet for a pre-observation lesson planning 

session where a planning pro forma was completed. As part of this meeting the teacher 

educators identified the goals for the class, the key understandings to be attained, the intended 

activities and their purpose, and anticipated PST responses to the activities (including likely 

difficulties).  

Each educator then conducted her workshop class (see Table 2). During each class the 

other acted as an observer. Field notes were made by the observer to record teaching 

strategies (including those that were responsive to unforeseen dilemmas), activities, teachable 

moments (key teaching opportunities—planned or unplanned—that could highlight a 

significant mathematical or pedagogical idea for the PSTs), and any events/ideas that were 

thought worthy of follow-up discussion. Because of the teaching arrangements for the 

classes, it made sense to observe the first two classes of the day, since Tracey had only one 

class and it was convenient and appropriate to observe Jill’s first class. Although Class 3 was 

not observed, the PSTs were still able to provide feedback as the tutorial was a duplicate of 

Class 2. 

At the completion of each tutorial, the PSTs were given a proforma that enabled them 

to provide feedback on “something that helped me learn”, “something I found confusing”, 

and “something that stopped my learning”. The purpose was to identify the educators’ 

strategies that the PSTs found helpful and to see if the PSTs, who were developing their own 

knowledge of pedagogy, could identify strategies the teacher had used, either in general or by 

reference to particular activities, such as “it helped when the tutor used Place Value Charts.”  

Within hours of the completion of the classes, the teacher educators met to reflect on 

the classes. These reflections involved informal discussion that considered the field notes and 

the student feedback, and resulted in additional notes about the teacher educators’ thinking 

about the class.   

 
Class Time (Thursday) Number of 

students 

Taught by: Observed by: Surveys 

obtained from 

PSTs 

Class 1 9:00 – 11:00 21 Tracey Jill yes 

Class 2 11:00 –  1:00 25 Jill Tracey yes 

Class 3 3:00 – 5:00 24 Jill ------ yes 

Table 2: Face-to-face enrolments for ESH319 

 

All data collected—including the planning proforma documents, field notes, 

observations, reflections, and student feedback—were coded by the first two authors. An 

adapted open-coding approach (Flick, 2009) was used initially, in which the first two authors 

drew on their experience and knowledge of existing PCK frameworks (e.g., Chick, et al., 

2006; Chick & Beswick, 2013) to identify instances in the data where PCK was used or 

relevant. The initial coding in this section did not adhere to any one specific framework, and 

free codes were used so as not to limit opportunities to identify the use of PCK by the MTEs. 
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Instances of PCK and each author’s initial interpretations of the PCK taking place in 

that instance were compared and discussion was held about the reasons for any differences in 

perceptions until agreement on the nature of the PCK was reached and a final code applied. 

The Knowledge Quartet was then used as a framework for organising the final-coded data 

because it facilitated both broad categorisation and subcategorisation. This process is 

illustrated with the following example. Several examples of subtraction algorithms that could 

be addressed informally were intended to be presented in class and these were chosen based 

on increasing complexity of the mental arithmetic involved: (179-26), (365-47), (800-303). 

The initial free codes applied to these by the two researchers were “sequencing – cognitive 

demand” and “sequencing decisions by complexity”. After discussions, these were given the 

final codes of “decisions about sequencing” and “anticipation of complexity” and coded 

under the subcategory “sequence of topics” in the Knowledge Building category of 

“connection”. Discussions were held with the third author to seek additional feedback as to 

the interpretation of the categories and descriptors, and the codes applied. This also served 

the purpose of testing the framework. All data were systematically organised by date then 

compared for completeness of information. For example, on two occasions, one of the tutors 

was absent and the observation could not be done. On another occasion, the students had a 

heavy assignment load and many did not come to class on that particular week.  

For the purposes of this paper, the study reports on the classes from one week of the 

unit. It had the most complete data set to allow the best data triangulation, and incorporated a 

range of teaching incidents that illuminated teacher knowledge, giving it the potential to 

provide maximum insight into the two teacher educators’ practices. The focus of the chosen 

workshop was on the structure of different arithmetic problems, such as (a) how removing a 

subset from a group and, in contrast, looking at the difference in size between two groups 

both lead to subtraction and (b) that there are different types of division situations known as 

quotition and partition; and to learn how to model addition and subtraction algorithms with 

appropriate concrete materials like base-10 multibase arithmetic blocks (MAB). 

 

 

Results and Discussion 

 

In this section we present the data collected from the pre-observation notes, 

observation of lessons, pre-service teachers’ feedback, and post-lesson reflections for one 

week’s topic. We have elected to focus on one week in order to provide a rich description of 

the collaborative observation process and the findings. Week 7’s topic, “Place value and 

operating with numbers” was selected as there was a good response rate for PSTs’ written 

feedback, the field notes were particularly rich as a result of the events that occurred in the 

observed lessons, and the teacher educators’ teaching approaches and strategies were similar 

in both lessons. This provided the opportunity to examine the variation between the classes, 

since although PSTs’ responses can often be predicted for specific activities, the 

individual/group differences between PST’s prior knowledge and experiences resulted in 

some unpredictability that required the teacher educator to “think on her feet”. Responses to 

these moments offered additional insight into teacher educator PCK. 

The data are presented chronologically, beginning with an overview of the pre-

observation discussion which also provides a context for the lessons observed. The data 

related to the lessons observed are then presented, followed by the feedback received from 

the PSTs. Finally, data related to the post-lesson discussion are presented.  
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Applying the Knowledge Quartet Framework to Pre-Observation Lesson Planning and Discussion 

 

A few days prior to the weekly lesson, Jill and Tracey met to identify the lesson 

objectives and to complete the pre-observation pro forma. The lesson objectives that they 

identified collaboratively were as follows: 

• To familiarise PSTs with the different structures of addition, subtraction, 

multiplication, and division problems; 

• To emphasise the importance of exposing school students to a variety of problem 

structures, and for students to understand the concepts, not just the arithmetic 

computational processes; 

• To explicitly teach the difference between quotition and partition division problem 

situations; 

• To discuss the difference between informal and formal algorithms, and to emphasise 

the importance of informal algorithms and the implications of teaching formal 

algorithms; 

• To model the addition and subtraction algorithms using appropriate materials such as 

place-value charts and multibase arithmetic blocks (MAB) (in order to show students 

how to develop algorithms with understanding), with emphasis on use of correct 

terminology; and 

• To familiarise PSTs with useful tools/materials for teaching place value concepts, 

such as MAB and number expanders. 

Tracey and Jill also identified to each other their intended teaching strategies in order 

to achieve the learning objectives. These included: the provision of a visual guide for the 

class to indicate the structure for the lesson (using PowerPoint); the selection of whole 

number operation problems for PSTs to model based on different situation structures (e.g., 

the “take away” and “difference” examples for subtraction mentioned earlier); explicit 

discussion of the difference between quotition and partition division; a directive for PSTs to 

read an article about algorithm use before class (Clarke, 2005); and, to come ready to engage 

in discussion about the merits and purposes of informal and formal algorithms; the modelling 

of formal algorithms using MAB materials and place value charts; and constructing 

individual physical “number expanders” for highlighting place value and renaming of 

numbers (e,g, 674 as 67 tens and 4 ones). 

The planning proforma had three sections: the lesson objectives, intended teaching 

strategies, and anticipated PST difficulties/responses. In relation to the third section, Tracey 

and Jill identified that the following issues might arise for PSTs: 

• Confusion with different types of problems, particularly division; 

• Pre-conceived ideas and assumptions – e.g., subtract always means “take”; no prior 

awareness of different types of addition/subtraction situations; 

• A tendency to see the equals sign as signalling “do a computation” and/or “this is 

where the answer goes”; 

• Lack of familiarity with the term “algorithm” and the ideas of “informal” and 

“formal” algorithms; 

• A perception that the formal algorithm is the only “right way” of computing an 

answer, and/or being familiar with only one particular algorithm; 

• Inability to see the value of informal algorithms, maintaining a belief that the formal 

algorithm is the goal; 
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• Failure (through choice or circumstance) to have read the article prior to class; 

• Lack of familiarity with MAB materials and their use; 

• The use of inappropriate terms (e.g., “carrying”), perhaps as a legacy of prior 

learning; 

• Difficulty explaining how the algorithm works because they “just do it”; and 

• Difficulty with constructing number expanders (e.g., following directions to fold). 

As can be seen from the pre-lesson planning, the MTEs’ documentation provided 

evidence that a number of elements from all categories of the Knowledge Quartet framework 

were present. Foundational knowledge—which, for a teacher educator, involves knowledge 

of mathematics pedagogy—was evident in their identification of PSTs’ common errors and 

misconceptions about content and pedagogy for primary school mathematics teaching, and in 

planning for ways to address these. The planned focus on different problem structures 

showed an understanding of the structural and theoretical underpinnings of primary school 

mathematics content, and the intention to explicitly teach the difference between quotition 

and partition division demonstrates the correct use of mathematical language, as well as 

recognition that there are different conceptualizations of division. The intention to focus on 

informal algorithms and modelling with materials also indicated a focus on developing PSTs’ 

understanding, rather than relying on procedures. 

In terms of transforming the knowledge, the planning documentation shows that the 

MTEs had determined that MAB materials were an appropriate choice of representation for 

teaching place value concepts. They also intended to make use of interactive teaching 

techniques as they planned demonstrations around the use of the MAB materials along with 

the provision for the PSTs to practice using the materials and to construct a place value 

number expander. 

The connection category of the Knowledge Quartet was evident in the structure, foci, 

and links across the lesson. Based on their previous experiences with teaching this topic, the 

teacher educators were confident in anticipating the complexity of the topic, and helping the 

PSTs make connections among concepts and procedures. Their lesson notes and the 

PowerPoint presentation which outlined the structure of the lesson showed a clear sequence 

to the lesson which began with different problem structures before moving on to informal and 

formal algorithms.  

The fourth category in the Knowledge Quartet, contingency, refers to the teacher’s 

response to unplanned and/or unexpected classroom events. It was therefore not appropriate 

to analyse the pre-planning documentation and discussion for evidence of this; it was 

expected that this would arise in the lesson observations. Tracey and Jill did, however, 

discuss some of the issues that they thought may require contingent responses. 

 

 
Applying the Framework to Lesson Episodes 

 

In the next two sections we illustrate the application of the Knowledge Quartet in the 

analysis of lesson excerpts from Jill and Tracey’s lessons. The excerpts presented here were 

selected as they featured commonalities from both teacher educators’ lessons, they related to 

more than one aspect of the framework, and were particularly illustrative of the aspects that 

occurred. They also involved the teaching of significant ideas from the content of the unit, 

and so provide an opportunity to examine the teacher educator knowledge needed to convey 

that content. Each excerpt was analysed in terms of the four categories of the framework, and 

these categories frame the discussion and analysis presented here, noting that more than one 

category was represented in each situation.  
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Lesson Episode 1: Problem Structures 

 

Using the recommended text as a guide (Van de Walle, Karp & Bay-Williams, 2013), 

PSTs were directed to work in pairs to use counters to represent different problem structures, 

such as modeling “join” problems where the initial quantity, change, and result were, in turn, 

unknown. In this part of the tutorial, the MTEs worked to ensure PSTs remained on task, 

questioned PSTs about their understanding of the task, and provided guidance for those who 

may not have completed the task correctly. The task was relatively straightforward and did 

not reveal any misunderstandings from the PSTs. Following PSTs’ whole group sharing of 

the task, the MTEs emphasised that the task illustrated the knowledge required by a teacher, 

namely to be able to recognize and construct different problem structures, rather than being 

directly intended as an activity for children to complete. Common student errors and 

misconceptions associated with the operations were also discussed, such as “subtraction does 

not always involve ‘taking away’” and that “the equals sign is not a signifier for where the 

answer goes”.  

Quotition and partition division situations were then discussed with the PSTs and they 

were then asked to individually write story problems which demonstrated quotition and 

partition division scenarios. This proved more challenging, with some PSTs unable to 

compose a quotition example without assistance, and one PST providing a multiplication 

example: “Tom had 12 bags of lollies with 4 lollies in each bag. How many lollies did he 

have?” As some PSTs still seemed confused about distinguishing the difference between the 

two situations, more PSTs were selected to share their examples aloud to the class. Tracey 

chose to respond to this by giving a practical example. In order to demonstrate why quotition 

division can be a more appropriate “action” than partitioning in some circumstances, Tracey 

chose to share the example of 1½ ÷ ¼ on the board to the class, highlighting that it does not 

make clear sense to talk about partition (1½ objects shared among ¼ of a person), but that a 

quotition interpretation is more meaningful (asking how many orange quarters can be made 

from 1½ oranges).  

 

 
Foundation 

 

Tracey’s decision, as unit coordinator, to expose PSTs to the different problem 

structures was informed by her professional knowledge of the theoretical underpinnings for 

arithmetic problem structures. In particular, the structures—and the resulting arithmetic 

solutions—are based on the kinds of relationships involved amongst the quantities 

(Carpenter, Fennema, Franke, Levi, & Empson, 1999). In her explanation to the PSTs while 

in the classroom, she directed them to the appropriate pages in the textbook and emphasized 

the correct use of mathematical terminology. When monitoring the PSTs’ attention to the task 

she noticed that many seemed to be carrying out the procedures mechanistically and she was 

concerned that some may not have realized the importance of exposing children to different 

problem types, so that children would encounter all the different types of arithmetic problems 

(e.g., addition calculations can arise from what looks like an subtraction situation: “I have 

some cards and, after losing 17, I now have 22; how many did I have at the beginning?”). 

One PST also asked about doing the problem structures activity with school students, 

providing Tracey with the opportunity to make the class aware of the purpose of the activity: 

it was to help them as teachers learn about different problem types, to ensure that they would 

give children a range of situations when constructing arithmetic word problems. Her 

individual monitoring of PSTs’ ability to compose different division problems also 

demonstrated Tracey’s subject knowledge, in that she was able to recognize appropriate 

examples and assist those PSTs who were having difficulty. 
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Transformation 

 

Tracey’s own knowledge of the different problem structures was secure, but the 

challenge she faced was transforming this knowledge into a form that could be accessed by 

and be relevant for PSTs. Her choice of examples and representations was guided by the 

textbook, hence demonstrating a belief in the authority of this work (an aspect of foundation 

knowledge). The following example was given for a “Join: Change Unknown” situation:  

“Sandra had 8 pennies. George gave her some more. Now Sandra has 12 pennies. How many 

did George give her?” All of the addition and subtraction examples had an American context 

yet Tracey did not acknowledge this. While this may not have impacted upon the PSTs’ 

ability to carry out the task, it may have impacted upon their overall engagement and 

perception of relevancy. 

After providing a demonstration of how to use counters to respond to the problem 

structures task, she provided the PSTs with the opportunity to work through the examples at 

their own pace, indicating a belief in using immersive teaching strategies. Interestingly, this 

aspect is not explicitly mentioned in the Knowledge Quartet, although it is present in Chick et 

al.’s (2006) framework. Counters were recommended for use in the text and Tracey 

recommended using different colours to represent the respective parts, hence demonstrating 

an appropriate choice of representation. PSTs’ evaluation of the lesson showed that they 

identified the modelling with materials and the opportunity to “physically do the activities” as 

being “helpful to their learning”.  

Tracey relied upon the PSTs to provide examples of partition and quotition situations, 

although the pre-planning pro forma shows that the teacher educators were aware these may 

cause confusion and had included examples in the on-line lecture materials that were 

available to the PSTs before the workshop. Post-lesson reflections between Tracey and Jill 

showed that both were concerned that some of the PSTs may not have developed a sound 

understanding of the difference between partition and quotition division. Time management 

was a factor in addressing this, as both MTEs felt required to cover the intended content and 

to move on in the lesson before being convinced that the concepts were understood.  

Tracey did, however, deliberately choose 1½ ÷ ¼ to demonstrate the applicability of 

quotition division when operating with certain fractions. The numbers in the problem were 

selected because they were familiar fractions and allowed for the focus to be on the operation 

or action, rather than using complex fractions. Through a diagram representing a length of 

ribbon one and a half metres long, Tracey demonstrated that lengths of ¼ of a metre could be 

made through repeated subtraction. Jill, who observed Tracey’s lesson prior to taking her 

own lesson, thought this to be a particularly effective example and used it with her own PST 

class. 

 

 
Connection 

 

Mathematics educators face the dual challenge of making connections within and 

among mathematical concepts, and making connections between mathematics education 

theory and classroom practice. In this particular lesson excerpt, there were opportunities to 

connect aspects of mathematics, such as the links between addition and subtraction, 

multiplication and division, and division as repeated subtraction. The Knowledge Quartet 

explicitly mentions “making connections between procedures” and “making connections 

between concepts”, and we would recommend including “making connections between 

theory and practice” when interpreting the work of teacher educators. There were a number 

of incidents in the lessons observed when both Tracey and Jill used a think-aloud technique 
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to expand on the reasons for their teaching approaches. For example, Tracey explicitly 

explained that the modelling of problem structures with counters was aimed at increasing the 

PSTs’ own knowledge, rather than an activity that would be enacted exactly as they 

performed it in a school classroom.  

In terms of making connections among concepts, and anticipating its complexity, this 

topic (in particular, quotition and partition situations) may have been under-estimated in its 

difficulty by the teacher educators, as some PSTs were still confusing the different division 

structures by the end of the activity. As previously indicated, however, time constraints meant 

that Tracey felt compelled to move on to the next part of the lesson (informal and formal 

algorithms) before ensuring all PSTs had made the necessary connections.  

 

 
Contingency 

 

As can be seen from the pre-planning documentation, Tracey and Jill had made some 

reasonable predictions about PSTs’ previous experiences and likely difficulties with the 

subject matter. It was not, however, anticipated that there would be confusion between 

multiplication and division. However, a teachable moment occurred when a PST wrote a 

multiplication story problem, rather than a division one. Tracey addressed this through 

referring to the language used of “how many” and cautioned against the tendency to make the 

phrase “how many” synonymous with division. She also attempted to elicit reasons for this 

from the PSTs, which prompted another contingency example. When the PSTs were asked as 

a whole group about why it might not be a good idea to equate “how many” with “division”, 

no one responded, leaving Tracey to think, “Do I phrase the question in another way?”, “Do I 

ask a class member and risk putting them on the spot?”, or “Do I give them my 

opinion/answer?” In this instance she essentially kept rephrasing the question until someone 

responded and followed this up with her own rationale which involved discussing the 

(limiting) teaching practice of looking for key phrases in word problems.  

 

 
Lesson Episode 2: Informal and formal Algorithms 

 

Prior to the commencement of the tutorial, students were requested to read Clarke’s 

(2005) paper on the teaching of written algorithms in the primary years. In this paper, Clarke 

detailed the dangers of introducing formal algorithms to students too early in primary 

schooling, particularly before solid understanding of related concepts and strategies are 

developed. The purpose of having students engage in the pre-reading was so that they could 

become familiar with Clarke’s arguments. It was expected that these arguments would, for 

the most part, contrast with and challenge the PSTs’ own rule-based experiences with school 

mathematics. 

In the workshop class, decisions about sequencing were made carefully to establish 

this concept, beginning with providing the PSTs with number problems to calculate 

informally. After presenting the first problem (179-26) and asking PST’s to solve it using an 

informal algorithm, it became quickly apparent from the resulting responses and confusion 

that the PSTs did not understand the difference between a formal and an informal algorithm. 

Both Tracey and Jill experienced similar responses and both asked the PSTs whether they had 

read the assigned article. It transpired that no student in either group had, limiting their 

understanding of the work to be undertaken and the discussion to be had around the 

introduction of formal algorithms. In the case of Jill’s class, Jill provided further clarification 

and introduced some additional problems that allowed students to start thinking about 
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different ways to calculate numerical problems informally. Tracey also provided additional 

examples to distinguish between the nature of informal and formal algorithms. 

 

 
Foundation 

 

Jill and Tracey had some familiarity with their PSTs’ prior experiences and beliefs 

about mathematics as this was elicited both explicitly and implicitly earlier in the unit. A 

majority of the PSTs had experienced school mathematics that had focused heavily on the use 

of formal algorithms. In planning for this week’s workshop, Jill drew on her knowledge of 

learners in recognizing that shifting students away from a reliance on formal algorithms 

would likely be difficult and therefore learning would need to challenge existing ideas quite 

strongly. Her recognition of this as a concern gives insight into Jill’s own beliefs about 

mathematics and what constitutes valid mathematical activity, experiences, and processes. 

The focus on the necessity for children to develop understanding in mathematics prior to 

learning formal procedures, suggests a view of mathematics as conceptual rather than 

procedural, thus demonstrating a focus on developing conceptual, rather than procedural 

understanding.   

 

 
Transformation 

 

The challenge of teaching is often for the teacher to take what is known and to 

transform this into knowledge that can be accessed by students (Rowland, et al., 2009), in this 

instance, PSTs. The intent was to familiarize the PSTs with informal and formal methods of 

calculation, and to then contrast the methods to demonstrate how informal methods draw on 

mathematical fluency and familiarity with the meanings of operations and the associated 

mathematical relationships. Formal methods are often accurate but, once taught, can be 

overused and often mask the underlying mathematical structures that are drawn upon. Rather 

than simply telling PSTs the advantages of extending work with informal algorithms, Jill 

sought to demonstrate to PSTs, through their own involvement, the way in which informal 

approaches draw on mathematical structures more so than procedural approaches. Although 

Jill was aware of this knowledge herself, decisions had to be made about how to transform 

this knowledge in such a way that PST’s could experience it for themselves. Jill chose to do 

this by putting up examples of relatively simple number problems on the board (for example, 

14  4 and 146 - 50). These problems were carefully chosen so as to have multiple possible 

methods for informal calculation. The PSTs were asked to work these out informally and 

then, after being given a few moments, were asked to share methods until such time as all 

ideas had been exhausted. For example, 14  4 could be calculated by multiplying 15  4 and 

then subtracting 1  4 (or 4). It could also be calculated by multiplying 10  4 and adding 4  

4; or by doubling 14 and then doubling that answer again; or by doubling 4 and halving 14 to 

get 8  7. Each of these possible responses makes use of key underlying mathematical 

structures, such as place value and the distributive law, and demonstrates their importance to 

arithmetical computation. These methods were able to be discussed along with the relevant 

structures. In this way, PSTs not only were able to unpack the mathematical structures 

involved, but also have the process demonstrated to them for use themselves in their role as 

teachers. This was then contrasted with the formal algorithm which, while deriving a correct 

answer, relies on procedural methods and is quite restricted in its opportunities for such 

discussions. With this approach, Jill sought to transform a highly contestable topic into 
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something PSTs could see and experience first-hand, strengthening the case for the use of 

informal approaches.  

 

 
Connection 

 

In order to maximize the connections among the role of algorithms, the mathematical 

structures that underpin them (e.g., the distributive law), and the when and how of teaching 

them, the order of content in the lesson was carefully planned. Initially, students were 

introduced to addition and subtraction problem structures: change problems, compare 

problems, and part-part-whole problems (Van de Walle et al., 2013). This was to allow a 

segue into a discussion on introducing children to informal and formal algorithms and 

addressing issues associated with introducing formal algorithms to children potentially before 

their conceptual understanding of operations and structure was solid. Finally, it was expected 

that this discussion would draw out the need for careful conceptual development, and the use 

of appropriate strategies, representations and language, which would set the scene for hands 

on work with MAB blocks, place value charts, and number expanders. 

 

 
Contingency 

 

Much that occurred in this workshop hinged on the PSTs having engaged with the 

reading material so that the terminology of “formal” and “informal” algorithms, and the 

arguments for using informal approaches had already been encountered. When it was 

determined by both Jill and Tracey that the PSTs had not engaged with the reading, this 

created a quandary. During the planning stage, the MTEs had considered that some students 

may not have done the reading, but not that no-one would. This created a situation where 

there was not even a critical mass to carry the conversation. Both Tracey and Jill were put in 

a situation of needing to make a rapid, unanticipated response in terms of addressing both the 

examples students were being asked to provide, and the intended discussion about 

introducing formal algorithms.   

Jill and Tracey both responded similarly in the first instance. They took one of the 

intended examples and carefully modelled both formal and informal approaches to solving, 

and then continued by having the PSTs address the other intended examples and sharing and 

discussing responses as intended. However, the more difficult issue stemmed from the 

inability to hold the planned discussion around the introduction of formal algorithms. Tracey 

approached the difficulty as a “teachable moment” (Clarke, Cheeseman, Gervasoni, Gronn, & 

McDonough, (2002) and asked the PSTs how they would deal with this in their own classes if 

their students were unprepared for the requirements of their own learning. She then 

proceeded to discuss the content of the paper but, due to time constraints, was unable to 

engage in the final activity which was to create a number expander and demonstrate its use. 

Jill also used the difficulty as a “teachable moment” but responded in a different manner by 

explaining the consequences of the situation and articulating the decision she now had to 

make as an educator. She explained to the PSTs that by not having read the article, she was 

now in a difficult situation as a teacher. She had to decide how to proceed. She explained 

what she believed the options to be: to unpack the article and explain the content and hold the 

intended discussion, and thus miss an important component of the class—the making and 

using of number expanders—or she could avoid the article, expect them to read it in their 

own time and hope they would, and continue with the number expander activities. She 

explained that she would choose the latter because the students could read the article in future 

but would not have the opportunity to again address number expanders. She stressed that she 
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felt the contents of the article were more important, because they impacted critically on 

pedagogy but that she was making the decision based on utility and the fact that the PSTs 

could not easily work with number expanders in their own time. 

 

 

PST Feedback 
 

In this section the PSTs’ own identification of teacher educator knowledge is 

examined, using the feedback that some of the students provided to the workshops. A total of 

16 PSTs provided feedback on Jill and Tracey’s lessons. In response to “Something that 

helped me learn,” 11 PSTs made reference to the use of visual representations and modelling 

with materials, showing alignment with the transformation category of the Knowledge 

Quartet. Closely related to this was the reference to physically carrying out the activities, 

demonstrating Jill and Tracey’s belief in making use of interactive teaching techniques. 

Illustrative comments included the following: 

Using the blocks to teach addition and subtraction, especially with larger 

numbers [PST701] 

Physically doing the work ourselves [PST703] 

The number expanders and the PVC [place value chart] sheets were really good 

and helped me think about how students would solve the problems [PST713] 

There were three references made in relation to discussions and/or explanations, 

which linked with the connections aspect of the Knowledge Quartet. 

With regard to identifying “Something that stopped my learning”, seven PSTs 

identified “nothing”, while the others mentioned becoming confused with using the MAB 

materials to model subtraction when regrouping was required, their own background in terms 

of understanding the mathematics required, and the use of incorrect terminology. Five PSTs 

also indicated that they were still unsure about the difference between quotition and partition 

division and three expressed confusion between informal and formal algorithms. Five PSTs 

explicitly mentioned not reading the Clarke article before class, likely influenced by Jill’s 

strong emphasis on this, and one identified “learning other ways to calculate”. In terms of 

connections with the Knowledge Quartet, reference to the use of materials and explanations 

aligned with the transformation category. 

 

 

Post-lesson Reflection 
 

Within hours of observing each lesson, Jill and Tracey met to reflect on what they had 

each observed and to clarify aspects of the practices observed. Much of the discussion 

focused around the issue of the PSTs not having completed the pre-reading of the Clarke 

article and how this impacted upon the intended lesson objectives and learning outcomes. As 

previously explained, the way in which they responded to this differed. In the post-lesson 

discussion, it was generally agreed that Jill’s response to use that as a “teachable moment” 

and spend time discussing what to do when students come to class unprepared, was probably 

the more appropriate approach. This enabled Jill to proceed with covering the other lesson 

objectives and intended teaching strategies. In this case, though, it must be noted that what 

the MTEs were teaching was a general pedagogical principle, rather than a mathematical or 

maths pedagogy principle, which reveals the diversity of issues that must be addressed in 

teacher education units. 

Both Jill and Tracey noted that, in terms of content, both groups had difficulty with 

distinguishing between quotition and partition division and between informal and formal 
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algorithms. There was also a lot of scaffolding required when the PSTs were modelling the 

algorithms using the MAB materials. The frequent use of inappropriate terms, such as 

“carrying” and “borrowing,” was noted, along with a lack of understanding how the written 

recording reflected what was happening with the regrouping of the MAB materials. 

In terms of reflecting upon the lessons with regard to their own practice, several 

common themes emerged. There were a number of incidents in each lesson when 

contingency decisions were required. These mostly occurred when PSTs were asked 

questions in a whole class situation and no-one responded. They also occurred when PSTs’ 

content knowledge impacted upon their ability to engage with the activities. The difference 

between quotition and partition division problems was an example of this. Both educators 

observed incidences of “talking aloud” to the PSTs about their own teaching decisions and/or 

making teaching approaches explicit. Both Jill and Tracey felt that having each other in the 

room while the lesson took place also assisted with this, as a dialogue could also occur 

between them.  

 

 

Conclusions and Implications 

 

The work of the teacher educator is complex, especially when the content of learning 

involves both subject discipline knowledge (e.g., mathematics, as in the case here) and 

appropriate pedagogical content knowledge. Some of the educator’s work, particularly 

dealing with general pedagogies and classroom management, is analogous to that of a school 

teacher, as seen in the second episode where Jill and Tracey had to deal with students who 

had come to class unprepared. Just as in regular teaching, the decision about how to proceed 

was not merely a matter of addressing the behaviour, but of making strategic choices about 

how to best achieve the intended learning goals for the lesson in the light of students’ 

readiness to proceed. Other aspects of teacher educator work seem to be less straightforward, 

precisely because the learning objectives can be a non-separable mix of pedagogical content 

knowledge and discipline knowledge. An example of this occurred when Tracey sought to 

help the PSTs understand about different problem structures as well as helping them to 

understand why teachers need to know this but not necessarily explicitly teach the different 

types in their classrooms. This also provides an example of the additional skills and 

knowledge required by a MTE. As suggested by this discussion, teacher educators must know 

PCK for teaching mathematics for two reasons: because they need to teach aspects of 

mathematics to the PSTs just like a school mathematics teacher, but also because PCK for 

teaching mathematics must itself be taught to the PSTs. In answer to the first research 

question, the results and discussion demonstrate that several aspects of MTEs PCK was 

evident including choice of examples, choice of representation, demonstration, anticipation of 

complexity and responding to PSTs’ ideas. The talk aloud technique employed by both MTEs 

was the dominant strategy for making these PCK aspects explicit for the PSTs. 

The Knowledge Quartet appeared to be useful as a broad framework for categorising 

the types of knowledge that Tracey and Jill brought to bear in their teaching. The finer 

grained descriptors from the third and fourth columns of Table 1—which echo some of the 

categories in other knowledge frameworks—were useful in allowing the identification of 

particular examples of knowledge being put into use. The categories provided a structure for 

both the observer and the educator to attend to knowledge use in teaching, and seemed to 

capture and describe what appeared to be the critical moments in planning for and carrying 

out teaching. It appears, then, that the Knowledge Quartet—originally designed for the 

teaching of mathematics—generalises “upwards” to the mathematics educator’s work of 
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teaching PCK for the teaching of mathematics, with the proviso that the “content” to be 

taught is now more multifaceted (as already discussed in the previous paragraph). 

In just these two workshops, each of the three enacted knowledge components was 

vital to Tracey and Jill’s work. Transformation was essential as Tracey tried to make 

arithmetic problem structures understandable both as a concept in its own right and as an 

underpinning framework for constructing arithmetic tasks for students. Connection was 

evident as both educators planned the lesson to cover types of operations and then the nature 

of algorithms for computing the results of arithmetical operations. Contingency—which 

usually requires the teacher to construct a solution to an unexpected teaching dilemma on the 

spur of the moment and is thus the component of the Knowledge Quartet that is hardest to 

predict and measure—was demonstrated by Jill as she took advantage of the PSTs’ failure to 

do the reading by working through some additional examples to highlight computation 

strategies but also as she highlighted more general teaching issues by discussing the reasons 

for her choices as a teacher when confronted with the very dilemma raised by the PSTs’ lack 

of preparation.  

As was the case when Chick and Beswick (2013, 2017) analysed the work of the third 

author interacting with PSTs in an online environment, contingency seems particularly 

critical to the work of the educator. The capacity to make decisions “in the moment”, 

constructing possible solutions for an unexpected teaching situation and then choosing and 

justifying one solution as optimal, is vital. As Mason and Davis (2013; see also Mason, 1998) 

suggest, educators need awareness of the content and context of teaching. They propose that 

this involves not necessarily knowing more but noticing more (so that the situation is better 

understood), and knowing more deeply (so that dependencies and interrelationships are 

identified). This allows a greater range of possible actions—mathematical and pedagogical—

to come to mind in a contingent situation, to be weighed up, chosen among, and acted upon. 

They write of the importance of being “with” the content knowledge of teaching to know it 

deeply, and to see that content knowledge in ways that are helpful for learners. For teacher 

educators this means having deep understanding of PCK—the content domain for teacher 

education units—and being able to see and present that knowledge in ways that are helpful 

for learners, and it frequently means developing it “in the moment.” 

In the complex space of teacher education an examination of the PCK held by teacher 

educators allows debate about what is critical to teach and how best to teach it. Frameworks 

such as the Knowledge Quartet make it possible to unpack the complexity of the work of the 

teacher educator. This study has provided only a case study snapshot of the knowledge and 

actions used in the work of preparing PSTs, and further work is needed to be more confident 

of its representativeness. However, the authors’ experiences in other pre-service teacher 

education work and the provision of professional learning programs suggest that PCK 

frameworks provide a valuable way for characterising our work. It would, nevertheless, be 

worth investigating more deeply the ways in which contingency depends on held knowledge 

and what processes take place as in-the-moment teaching decisions are made.     
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